壟斷被捕的可能性

在游戲壟斷中,有許多功能涉及概率的某些方面。當(dāng)然,由于在板上移動(dòng)的方法涉及滾動(dòng)兩塊骰子,因此很明顯游戲中存在一些機(jī)會(huì)因素。其中一個(gè)明顯的地方是被稱為監(jiān)獄的游戲部分。我們將在壟斷游戲中計(jì)算兩個(gè)關(guān)于監(jiān)獄的概率。

監(jiān)獄描述

壟斷的空間是玩家可以在途中“訪問”的空間,或者如果滿足一些條件,他們必須去哪里。在監(jiān)獄期間,玩家仍然可以收集租金和開發(fā)財(cái)產(chǎn),但無法在板子上移動(dòng)。在游戲初期,當(dāng)財(cái)產(chǎn)不歸所有時(shí),這是一個(gè)顯著的缺點(diǎn),因?yàn)橛螒虻倪M(jìn)展有時(shí)會(huì)更有利地停留在監(jiān)獄中,因?yàn)樗梢越档椭懺趯?duì)手開發(fā)的財(cái)產(chǎn)上的風(fēng)險(xiǎn)。

玩家可以通過三種方式進(jìn)入監(jiān)獄。

  1. 人們可以簡(jiǎn)單地放在董事會(huì)的“去監(jiān)獄”空間。
  2. 人們可以畫一個(gè)機(jī)會(huì)或社區(qū)胸卡標(biāo)記為“去監(jiān)獄”。
  3. 一個(gè)人可以連續(xù)三次滾動(dòng)雙峰(骰子上的兩個(gè)數(shù)字都是相同的)。

玩家也可以有三種方式逃離監(jiān)獄

  1. 使用“走出監(jiān)獄”卡
  2. 支付$50
  3. 玩家入獄后三圈中的任何一圈滾動(dòng)翻倍。
  4. 科普中

我們將在上面的每個(gè)列表中檢查第三個(gè)項(xiàng)目的概率。

被捕的可能性

我們將首先看看連續(xù)滾動(dòng)三倍的可能性。當(dāng)滾動(dòng)兩個(gè)骰子時(shí),在總共36個(gè)可能的結(jié)果中,有六個(gè)不同的卷是雙倍(雙1,雙2,雙3,雙4,雙5和雙6)。因此,在任何時(shí)候,滾動(dòng)雙倍的概率是6/36=1/6。

現(xiàn)在每卷骰子都是獨(dú)立的。因此,任何給定的轉(zhuǎn)彎將導(dǎo)致雙峰連續(xù)滾動(dòng)三次的概率是(1/6)x(1/6)x(1/6)=1/216。這大約是0.46%。雖然這似乎只是一小部分,但考慮到大多數(shù)壟斷游戲的長(zhǎng)度,這很可能會(huì)在游戲期間發(fā)生在某個(gè)人身上。

離開監(jiān)獄的可能性

我們現(xiàn)在轉(zhuǎn)向通過翻滾雙倍離開監(jiān)獄的可能性。這個(gè)概率稍微難以計(jì)算,因?yàn)橛胁煌那闆r需要考慮:

  • 我們?cè)诘谝淮螡L動(dòng)時(shí)滾動(dòng)雙倍的概率是1/6。
  • 我們?cè)诘诙喍皇堑谝惠啙L動(dòng)雙倍的概率是(5/6)x(1/6)=5/36。
  • 我們滾動(dòng)第三圈而不是第一圈或第二圈的概率是(5/6)x(5/6)x(1/6)=25/216。

因此,滾動(dòng)雙倍逃離監(jiān)獄的概率是1/6+5/36+25/216=91/216,或約42%。

我們可以用不同的方式計(jì)算這個(gè)概率。“在接下來的三圈內(nèi)至少翻滾一次”事件的補(bǔ)充是“我們?cè)诮酉聛淼娜?nèi)根本不會(huì)翻滾兩次”。因此,不翻滾任何雙峰的概率是(5/6)x(5/6)x(5/6)=125/216。由于我們已經(jīng)計(jì)算出要找到的事件的補(bǔ)碼概率,因此我們從****中減去該概率。我們得到與從另一種方法獲得的1-125/216=91/216相同的概率。

其他方法的概率

其他方法的概率很難計(jì)算。它們都涉及著陸在特定空間(或著陸在特定空間并繪制特定卡)的概率。找到在壟斷中落在某個(gè)空間的概率實(shí)際上是相當(dāng)困難的。這種問題可以解決alt通過使用蒙特卡洛模擬方法。

科普_1